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The Problem

A Phylogenetic tree encodes the evolutionary history.
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The Problem

When constructing such a tree, we are usually given pair-wise distances
among species (dissimilarity map).

In most cases, such distances does not correspond to a phylogenetic tree.
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The Problem
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The Problem

These methods only give one or a part of the possible reconstruction.

Goal: obtain all possible reconstructions in the `∞ sense.

Preliminary results by Bernstein:

Proposition (Ber18)

Let d be a dissimilarity map on a finite set X . The set of ultrametrics that
are nearest to δ in the l∞-norm is a tropical polytope.

Bernstein also proposed a way to produce a set that is the superset of
all the extremes of such polytope.

My result: this set contains only the extremes when |X | = 3.
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Tropical algebra

(max) tropical semiring (Rmax,⊕,�).

Rmax = R ∪ {−∞};
x ⊕ y = max(x , y);

x � y = x + y .

For x , y ∈ Rd
max, their tropical inner product is

x · y = max
1≤i≤d

(xi + yi ).

For A ∈ Rn×d
max and x ∈ Rd

max, their tropical matrix-vector product is

Ax ∈ Rn
max and (Ax)k = Ak · x = max

1≤i≤d
(Aki + xi ).
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Tropical halfspace

Definition (Tropical halfspace)

A tropical halfspace is defined by the inequality:

{x ∈ Rd
max|a · x ≤ b · x}, a, b ∈ Rd

max.
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Tropical cone

The following is the H-representation of a tropical cone.

Definition (Tropical cone)

A tropical cone C is the intersection of n halfspaces. Written as a system
of inequalities:

Ax ≤ Bx , A,B ∈ Rn×d
max .

Example:

x3 ≤ x1 + 2

x1 ≤ max(x2, x3)

x1 ≤ x3 + 2

x3 ≤ max(x1, x2 − 1)


−∞ −∞ 0

0 −∞ −∞
0 −∞ −∞
−∞ −∞ 0

 x ≤


2 −∞ −∞
−∞ 0 0
−∞ −∞ 2

0 −1 −∞

 x
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Tropical cone

The following is the V-representation of a tropical cone.

Definition (Generation of cone, extreme)

A finite set G =
(
g i
)
i∈I ⊆ C of vectors is said to generate a cone C if

∀x ∈ C, x =
⊕

i λig
i , λi ∈ Rmax. The smallest such set is called the

extremes of tropical cone.

Example:

p0 = (−∞, 0,−∞)

p1 = (−2, 1, 0)

p2 = (2, 2, 0)

p3 = (0,−∞, 0)
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Dissimilarity map

Let X = {x1, · · · , xn} be a finite set.

Definition (Dissimilarity map)

A dissimilarity map on X is a function d : X × X → R. s.t. d(x , x) = 0
and d(x , y) = d(y , x), ∀x , y ∈ X . It can be expressed as a symmetric

matrix with zero diagonal in R([n]2 ).

Example:

d =


0 2 4 6
2 0 8 10
4 8 0 12
6 10 12 0

 ∈ R([4]2 )
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Distance

Definition (l∞ distance)

Given two dissimilarity map d1, d2 on X with associated matrices D1,D2,
define the l∞ distance ‖d1 − d2‖∞ to be the greatest entries in |D1 − D2|.

Example:

d1 =


0 5 7 9
5 0 7 9
7 7 0 9
9 9 9 0

 , d2 =


0 2 4 6
2 0 8 10
4 8 0 12
6 10 12 0

 .

Then
‖d1 − d2‖∞ = 3.
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Rooted X -tree

Definition (Rooted X -tree)

A rooted X -tree T is a tree with leaf set X and one interior vertex is
designated as the root.

Notations:

root(T ): the root of T ;
DesT (v) the descendants of vertex v in T ;
T ◦: the set of interior vertices of T .

Example:

A B C D

root(T )

X = { }
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Rooted X -tree

Definition (Weighting of X -tree)

Weighting of X -tree is the function α : T ◦ → R assigns values to each
internal node of T .

The pair (T , α) induces a dissimilarity map δT ,α on X defined by
δT ,α(xi , xj) = α(v) where v ∈ T ◦ is the vertex nearest to root(T ) in the
unique path from xi to xj .

Example:

A B C D

5
7

9

T , α = δT ,α =


0 5 7 9
5 0 7 9
7 7 0 9
9 9 9 0
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Rooted X -tree

Definition (Compatibility of weighting)

α is compatible with T if α(u) ≤ α(v), ∀u ∈ DesT (v).

Example:

A B C D

8
7

9

Incompatible

A B C D

5
7

9

Compatible
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Ultrametric

Definition (Ultrametric)

Given dissimilarity map δ on X , if ∃X -tree T and compatible α s.t.
δ = δT ,α, δ is an ultrametric.

Example:

δ =


0 5 7 9
5 0 7 9
7 7 0 9
9 9 9 0


is uniquely realized by the following tree and weighting

A B C D

5
7

9

T , α =
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Ultrametric

Equivalent definition of ultrametric:

Definition (Ultrametric)

∀xi , xj , xk ∈ X , δ(xi , xk) ≤ max(δ(xi , xj), δ(xj , xk)).

One reason to use `∞-norm.
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Question

Proposition (Ber18)

Let d be a dissimilarity map on a finite set X . The set of ultrametrics that
are nearest to δ in the l∞-norm is a tropical polytope.

P(d) = argmin
ultrametric δ

‖δ − d‖∞

Denote by E(d) the set of extremes of P(d).
Can we find E(d)?
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l∞ nearest ultrametric

[CF00] gives an algorithm that computes one of the l∞-nearest
ultrametrics, called the maximal closest ultrametric to d , denoted by δm.
Example: find δm for

d =


0 2 4 6
2 0 8 10
4 8 0 12
6 10 12 0


Step 1: Draw the complete graph on vertex set {A,B,C ,D}.

C D

A B
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l∞ nearest ultrametric

Step 2: Label the edge between x and y by d(x , y).

C D

A B

4 10

2

12

6 8

Step 3: Define

du(x , y) = min
path P from x to y

(
max

edges (i , j) of P
d(i , j)

)
=


0 2 4 6
2 0 4 6
4 4 0 6
6 6 6 0
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l∞ nearest ultrametric

Step 4: Define

q = ‖du − d‖∞ =

∥∥∥∥∥∥∥∥


0 2 4 6
2 0 4 6
4 4 0 6
6 6 6 0

−


0 2 4 6
2 0 8 10
4 8 0 12
6 10 12 0


∥∥∥∥∥∥∥∥
∞

= 6

and let 1 be the ultrametric such that 1(x , y) = 1, ∀x 6= y ∈ X . Then

δm = du +
q

2
1 =


0 5 7 9
5 0 7 9
7 7 0 9
9 9 9 0


is an ultrametric that is l∞-nearset to d .
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Bernstein’s sliding-internal-node method

δm ∈ P(d) but not necessarily δm ∈ E(d);

Start from δm, Bernstein’s sliding-internal-node method gives B(d);

B(d) ⊇ E(d).
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Mobility of nodes

Definition (Mobility)

Let δ be a dissimilarity map on X and let u be an ultrametric that is
closest to δ in the l∞-norm. Let T be a resolution of the topology of u
and let α be the internal nodes weighting s.t. δT ,α = u. An internal node
v of T is said to be mobile if there exists an ultrametric û 6= u, expressible
as û = δT ,α̂ s.t.

û is also nearest to δ in the l∞-norm,

α̂(x) = α(x), ∀x ∈ T ◦, x 6= v , and

α̂(v) ≤ α(v).

In this case, we say that û is obtained from u by sliding v down. If
moreover v is no longer mobile in δT ,α̂, i.e., if
α̂(v) = max{α(y) : y ∈ DesT (u)}, or α̂(v) is the minimum value s.t. δT ,α̂
is nearest to δ in the l∞-norm, then we say that û is obtained from u by
sliding v all the way down.
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Mobility of nodes

Example: sliding a mobile node
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Mobility of nodes

Example: sliding a mobile node all the way down
Situation 1:
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Mobility of nodes

Example: sliding a mobile node all the way down
Situation 2:
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l∞ nearest ultrametric

Example:

A B C D

5
7

9
A CB D

5

9

A B C D

−1

7
9

A BC D

5
1

9

A B C D

−1

5

9
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l∞ nearest ultrametric

Theorem (Ber18)

Let δ be a dissimilarity map on X . Let S0 = {δm}, and for each i ≥ 1
define Si to be the set of ultrametrics obtained from some u ∈ Si−1 by
sliding a mobile internal node of a resolution of the topology of u all the
way down. Then

∪iSi is a finite set, and

the tropical convex hull of ∪iSi is the set of ultrametrics l∞-nearest
to δ, and

every vertex of this tropical polytope has at most one mobile internal
node.
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l∞ nearest ultrametric

d =


0 2 4 6
2 0 8 10
4 8 0 12
6 10 12 0



Question: Is this a sufficient condition to be extreme?Luyan Yu (University of Texas at Austin) Nov 2, 2019 28 / 51



Main Theorem

Theorem (Yu19)

Let d be a dissimilarity map on X . Denote by B(d) the set generated by
Bernstein’s procedure and E(d) the set of extremes. Then B(d) = E(d)
when |X | = 3; B(d) ) E(d) when |X | ≥ 4.
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Sketch of proof

Enumerate all possible cases when |X | = 3;

Inductively construct counterexamples when |X | ≥ 4.
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Characterization of extremes

A point in the tropical polytope corresponds to a directed hypergraph,
called tangent directed hypergraph.
Example:
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Characterization of extremes

Theorem (AGG10)

Let C be a tropical cone. A vector v ∈ C is extreme iff. the set of the
strongly connected components of the tangent directed hypergraph at
v ∈ C, partially ordered by the reachability relation, admits a greatest
element.

Luyan Yu (University of Texas at Austin) Nov 2, 2019 32 / 51



Sketch of proof

Enumerate all possible cases when |X | = 3
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Sketch of proof

Inductively construct counterexamples when |X | ≥ 4
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Sketch of proof

Inductively construct counterexamples when |X | ≥ 4
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Further direction

A direct method to generate all extremes based on enumerating the
tangent hypergraphs.
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Thank You!
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