Extremes of the ℓ^{∞} -nearest ultrametric tropical polytope [Yu19]

Luyan Yu

University of Texas at Austin

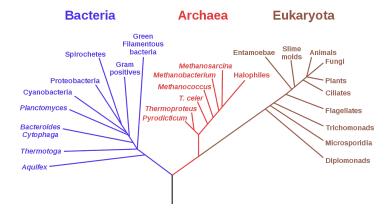
Nov 2, 2019

Luyan Yu (University of Texas at Austin)

▶ < 돌 > 돌 Nov 2, 2019 1/51

The Problem

A Phylogenetic tree encodes the evolutionary history.



When constructing such a tree, we are usually given pair-wise distances among species (dissimilarity map).

In most cases, such distances does not correspond to a phylogenetic tree.

(4) (日本)

- Naoko Takezaki and Masatoshi Nei. Genetic distances and reconstruction of phylogenetic trees from microsatellite dna. *Genetics*, 144(1):389-399, 1996.
- Korbinian Strimmer and Arndt Von Haeseler. Quartet puzzling: a quartet maximum-likelihood method for reconstructing tree topologies. Molecular biology and evolution, 13(7):964-969, 1996.
- Naruya Saitou and Masatoshi Nei. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular biology and evolution, 4(4):406-425, 1987.

イロト 不得 トイラト イラト 二日

The Problem

- These methods only give one or a part of the possible reconstruction.
- \bullet Goal: obtain all possible reconstructions in the ℓ^∞ sense.

The Problem

- These methods only give one or a part of the possible reconstruction.
- Goal: obtain all possible reconstructions in the ℓ^∞ sense.

Preliminary results by Bernstein:

Proposition (Ber18)

Let d be a dissimilarity map on a finite set X. The set of ultrametrics that are nearest to δ in the l^{∞} -norm is a tropical polytope.

- Bernstein also proposed a way to produce a set that is the superset of all the extremes of such polytope.
- My result: this set contains only the extremes when |X| = 3.

Tropical algebra

(max) tropical semiring $(\mathbb{R}_{max}, \oplus, \odot)$.

- $\mathbb{R}_{\max} = \mathbb{R} \cup \{-\infty\};$
- $x \oplus y = \max(x, y);$

•
$$x \odot y = x + y$$
.

For $\pmb{x}, \pmb{y} \in \mathbb{R}^d_{\mathsf{max}}$, their tropical inner product is

$$\boldsymbol{x} \cdot \boldsymbol{y} = \max_{1 \leq i \leq d} (x_i + y_i).$$

For $A \in \mathbb{R}_{\max}^{n imes d}$ and $\pmb{x} \in \mathbb{R}_{\max}^d$, their tropical matrix-vector product is

$$A \boldsymbol{x} \in \mathbb{R}^n_{\max}$$
 and $(A \boldsymbol{x})_k = A_k \cdot x = \max_{1 \leq i \leq d} (A_{ki} + x_i).$

イロト 不得下 イヨト イヨト 二日

Definition (Tropical halfspace)

A tropical halfspace is defined by the inequality:

$$\{ \boldsymbol{x} \in \mathbb{R}^d_{\mathsf{max}} | \boldsymbol{a} \cdot \boldsymbol{x} \leq \boldsymbol{b} \cdot \boldsymbol{x} \}, \quad \boldsymbol{a}, \boldsymbol{b} \in \mathbb{R}^d_{\mathsf{max}}.$$

Tropical cone

The following is the H-representation of a tropical cone.

Definition (Tropical cone)

A tropical cone C is the intersection of *n* halfspaces. Written as a system of inequalities:

 $A\mathbf{x} \leq B\mathbf{x}, \quad A, B \in \mathbb{R}_{\max}^{n \times d}.$

Example:

$$egin{array}{ll} x_3 \leq x_1+2 \ x_1 \leq \max(x_2,x_3) \ x_1 \leq x_3+2 \ x_3 \leq \max(x_1,x_2-1) \end{array} egin{pmatrix} -\infty & -\infty & 0 \ 0 & -\infty & -\infty \ -\infty & -\infty \ -\infty & -\infty \end{array} egin{pmatrix} \mathbf{x} \leq \left(egin{array}{ccc} 2 & -\infty & -\infty \ -\infty & 0 \ \end{array}
ight) \mathbf{x} \leq \left(egin{pmatrix} 2 & -\infty & -\infty \ -\infty & 0 \ \end{array}
ight) \mathbf{x} \end{array}$$

イロト 不得 トイラト イラト 二日

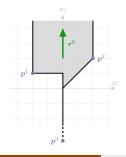
Tropical cone

The following is the V-representation of a tropical cone.

Definition (Generation of cone, extreme)

A finite set $G = (\mathbf{g}^i)_{i \in I} \subseteq C$ of vectors is said to generate a cone C if $\forall \mathbf{x} \in C$, $\mathbf{x} = \bigoplus_i \lambda_i \mathbf{g}^i, \lambda_i \in \mathbb{R}_{max}$. The smallest such set is called the extremes of tropical cone.

Example:



$$egin{aligned} m{
ho}_0 &= (-\infty, 0, -\infty) \ m{
ho}_1 &= (-2, 1, 0) \ m{
ho}_2 &= (2, 2, 0) \ m{
ho}_3 &= (0, -\infty, 0) \end{aligned}$$

▲ □ ▶ ▲ □ ▶ ▲

Dissimilarity map

Let $X = \{x_1, \cdots, x_n\}$ be a finite set.

Definition (Dissimilarity map)

A dissimilarity map on X is a function $d : X \times X \to \mathbb{R}$. s.t. d(x, x) = 0and $d(x, y) = d(y, x), \forall x, y \in X$. It can be expressed as a symmetric matrix with zero diagonal in $\mathbb{R}^{\binom{[n]}{2}}$.

Example:

$$d = \begin{pmatrix} 0 & 2 & 4 & 6 \\ 2 & 0 & 8 & 10 \\ 4 & 8 & 0 & 12 \\ 6 & 10 & 12 & 0 \end{pmatrix} \in \mathbb{R}^{\binom{[4]}{2}}$$

Distance

Definition (I^{∞} distance)

Given two dissimilarity map d_1, d_2 on X with associated matrices D_1, D_2 , define the l^{∞} distance $||d_1 - d_2||_{\infty}$ to be the greatest entries in $|D_1 - D_2|$.

Example:

$$d_1 = \begin{pmatrix} 0 & 5 & 7 & 9 \\ 5 & 0 & 7 & 9 \\ 7 & 7 & 0 & 9 \\ 9 & 9 & 9 & 0 \end{pmatrix}, d_2 = \begin{pmatrix} 0 & 2 & 4 & 6 \\ 2 & 0 & 8 & 10 \\ 4 & 8 & 0 & 12 \\ 6 & 10 & 12 & 0 \end{pmatrix}$$

Then

$$\left\|d_1-d_2\right\|_{\infty}=3.$$

Rooted X-tree

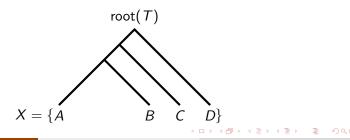
Definition (Rooted X-tree)

A rooted X-tree T is a tree with **leaf** set X and one interior vertex is designated as the root.

Notations:

- root(T): the root of T;
- $\text{Des}_T(v)$ the descendants of vertex v in T;
- T° : the set of interior vertices of T.

Example:



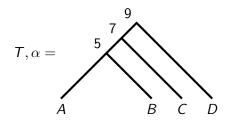
Rooted X-tree

Definition (Weighting of X-tree)

Weighting of X-tree is the function $\alpha : T^{\circ} \to \mathbb{R}$ assigns values to each internal node of T.

The pair (T, α) induces a dissimilarity map $\delta_{T,\alpha}$ on X defined by $\delta_{T,\alpha}(x_i, x_j) = \alpha(v)$ where $v \in T^\circ$ is the vertex nearest to root(T) in the unique path from x_i to x_j .

Example:



 $\delta_{\mathcal{T},\alpha} = \begin{pmatrix} 0 & 5 & 7 & 9 \\ 5 & 0 & 7 & 9 \\ 7 & 7 & 0 & 9 \\ 9 & 9 & 9 & 0 \end{pmatrix}$

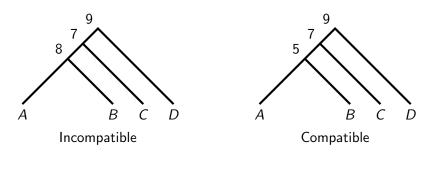
< ロト < 同ト < ヨト < ヨト

Rooted X-tree

Definition (Compatibility of weighting)

 α is compatible with T if $\alpha(u) \leq \alpha(v), \forall u \in \text{Des}_T(v)$.

Example:



Ultrametric

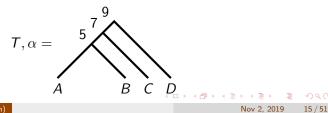
Definition (Ultrametric)

Given dissimilarity map δ on X, if $\exists X$ -tree T and compatible α s.t. $\delta = \delta_{T,\alpha}$, δ is an ultrametric.

Example:

$$\delta = \begin{pmatrix} 0 & 5 & 7 & 9 \\ 5 & 0 & 7 & 9 \\ 7 & 7 & 0 & 9 \\ 9 & 9 & 9 & 0 \end{pmatrix}$$

is uniquely realized by the following tree and weighting



Equivalent definition of ultrametric:

Definition (Ultrametric)

 $\forall x_i, x_j, x_k \in X, \delta(x_i, x_k) \leq \max(\delta(x_i, x_j), \delta(x_j, x_k)).$

One reason to use ℓ^{∞} -norm.

イロト 不得下 イヨト イヨト 二日

Proposition (Ber18)

Let d be a dissimilarity map on a finite set X. The set of ultrametrics that are nearest to δ in the l^{∞} -norm is a tropical polytope.

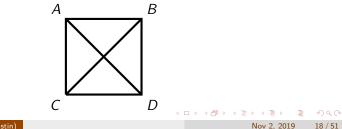
$${\it P}({\it d}) = \mathop{
m argmin}\limits_{\it ultrametric \; \delta} \left\| \delta - {\it d}
ight\|_{\infty}$$

Denote by $\mathcal{E}(d)$ the set of extremes of P(d). Can we find $\mathcal{E}(d)$?

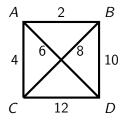
[CF00] gives an algorithm that computes **one** of the l^{∞} -nearest ultrametrics, called the maximal closest ultrametric to d, denoted by δ_m . Example: find δ_m for

$$d = \left(\begin{array}{rrrrr} 0 & 2 & 4 & 6 \\ 2 & 0 & 8 & 10 \\ 4 & 8 & 0 & 12 \\ 6 & 10 & 12 & 0 \end{array}\right)$$

Step 1: Draw the complete graph on vertex set $\{A, B, C, D\}$.



Step 2: Label the edge between x and y by d(x, y).



Step 3: Define

$$d_{u}(x,y) = \min_{\text{path } P \text{ from } x \text{ to } y} \left(\max_{\text{edges } (i,j) \text{ of } P} d(i,j) \right) = \left(\begin{array}{cccc} 0 & 2 & 4 & 6 \\ 2 & 0 & 4 & 6 \\ 4 & 4 & 0 & 6 \\ 6 & 6 & 6 & 0 \end{array} \right)$$

A (10) < A (10) </p>

Step 4: Define

$$q = \|d_u - d\|_{\infty} = \left\| \begin{pmatrix} 0 & 2 & 4 & 6 \\ 2 & 0 & 4 & 6 \\ 4 & 4 & 0 & 6 \\ 6 & 6 & 6 & 0 \end{pmatrix} - \begin{pmatrix} 0 & 2 & 4 & 6 \\ 2 & 0 & 8 & 10 \\ 4 & 8 & 0 & 12 \\ 6 & 10 & 12 & 0 \end{pmatrix} \right\|_{\infty} = 6$$

and let 1 be the ultrametric such that $1(x, y) = 1, \forall x \neq y \in X$. Then

$$\delta_m = d_u + \frac{q}{2}\mathbf{1} = \begin{pmatrix} 0 & 5 & 7 & 9\\ 5 & 0 & 7 & 9\\ 7 & 7 & 0 & 9\\ 9 & 9 & 9 & 0 \end{pmatrix}$$

is an ultrametric that is I^{∞} -nearset to d.

▲ロト ▲撮 ト ▲ 臣 ト ▲ 臣 ト 一臣 - のへで

Bernstein's sliding-internal-node method

- $\delta_m \in P(d)$ but not necessarily $\delta_m \in \mathcal{E}(d)$;
- Start from δ_m , Bernstein's sliding-internal-node method gives $\mathcal{B}(d)$; • $\mathcal{B}(d) \supset \mathcal{S}(d)$
- $\mathcal{B}(d) \supseteq \mathcal{E}(d)$.

イロト 不得下 イヨト イヨト 二日

Mobility of nodes

Definition (Mobility)

Let δ be a dissimilarity map on X and let u be an ultrametric that is closest to δ in the l^{∞} -norm. Let T be a resolution of the topology of uand let α be the internal nodes weighting s.t. $\delta_{T,\alpha} = u$. An internal node v of T is said to be *mobile* if there exists an ultrametric $\hat{u} \neq u$, expressible as $\hat{u} = \delta_{T,\hat{\alpha}}$ s.t.

• \hat{u} is also nearest to δ in the l^{∞} -norm,

•
$$\hat{\alpha}(x) = \alpha(x), \forall x \in T^{\circ}, x \neq v$$
, and

•
$$\hat{\alpha}(\mathbf{v}) \leq \alpha(\mathbf{v}).$$

In this case, we say that \hat{u} is obtained from u by sliding v down. If moreover v is no longer mobile in $\delta_{T,\hat{\alpha}}$, i.e., if $\hat{\alpha}(v) = \max\{\alpha(y) : y \in \text{Des}_{T}(u)\}$, or $\hat{\alpha}(v)$ is the minimum value s.t. $\delta_{T,\hat{\alpha}}$ is nearest to δ in the l^{∞} -norm, then we say that \hat{u} is obtained from u by sliding v all the way down. Example: sliding a mobile node

イロト イヨト イヨト イヨト 二日

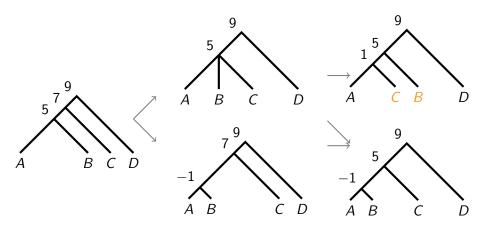
Example: sliding a mobile node *all the way down* Situation 1:

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Example: sliding a mobile node *all the way down* Situation 2:

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Example:



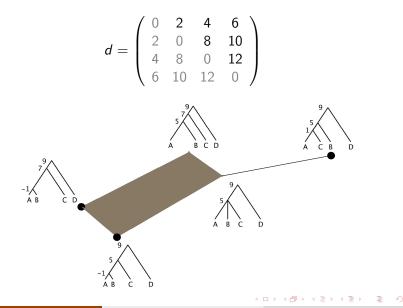
э

(日) (四) (三) (三)

Theorem (Ber18)

Let δ be a dissimilarity map on X. Let $S_0 = {\delta_m}$, and for each $i \ge 1$ define S_i to be the set of ultrametrics obtained from some $u \in S_{i-1}$ by sliding a mobile internal node of a resolution of the topology of u all the way down. Then

- $\cup_i S_i$ is a finite set, and
- the tropical convex hull of ∪_iS_i is the set of ultrametrics l[∞]-nearest to δ, and
- every vertex of this tropical polytope has at most one mobile internal node.



Theorem (Yu19)

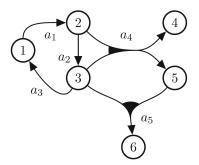
Let d be a dissimilarity map on X. Denote by $\mathcal{B}(d)$ the set generated by Bernstein's procedure and $\mathcal{E}(d)$ the set of extremes. Then $\mathcal{B}(d) = \mathcal{E}(d)$ when |X| = 3; $\mathcal{B}(d) \supseteq \mathcal{E}(d)$ when $|X| \ge 4$.

- Enumerate all possible cases when |X| = 3;
- Inductively construct counterexamples when $|X| \ge 4$.

(日) (四) (三) (三)

Characterization of extremes

A point in the tropical polytope corresponds to a directed hypergraph, called tangent directed hypergraph. Example:



A (10) < A (10) </p>

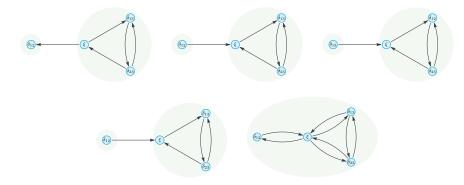
Theorem (AGG10)

Let C be a tropical cone. A vector $\mathbf{v} \in C$ is extreme iff. the set of the **strongly connected components** of the tangent directed hypergraph at $\mathbf{v} \in C$, partially ordered by the reachability relation, admits a greatest element.

- 4 個 ト 4 ヨ ト 4 ヨ

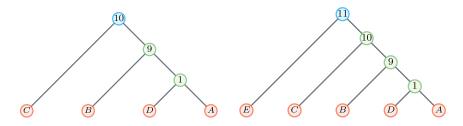
Sketch of proof

Enumerate all possible cases when |X| = 3



イロト イヨト イヨト イヨ

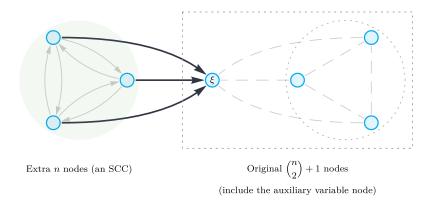
Inductively construct counterexamples when $|X| \ge 4$



・ロト ・日 ・ ・ ヨト ・

Sketch of proof

Inductively construct counterexamples when $|X| \ge 4$



イロト イヨト イヨト イヨ

• A direct method to generate all extremes based on enumerating the tangent hypergraphs.

References

- Q L. Yu. Extreme rays of the ℓ[∞]-nearest ultrametric tropical polytope. To appear on Linear Algebra and Appl.
- S. Gaubert and R. Katz. The Minkowski theorem for max-plus convex sets. Linear Algebra and Appl., 421:356–369, (2007).
- In V. Chepoi and B. Fichet. I_∞-approximation via subdominants. Journal of Mathematical Psychology, 44:600-616, (2000).
- Bernstein, Daniel Irving, and Colby Long. L-Infinity optimization in tropical geometry and phylogenetics. arXiv preprint arXiv:1606.03702 (2016).
- Allamigeon, Xavier, Stéphane Gaubert, and Eric Goubault. "The tropical double description method." arXiv preprint arXiv:1001.4119 (2010).

イロト 不得下 イヨト イヨト 二日

Thank You!

Luyan Yu (University of Texas at Austin)

▶ < ≣ ▶ ≣ ∽ < < Nov 2, 2019 37 / 51