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What is TQC?

One of the quantum computational models among many others:

Quantum circuit

Adiabatic quantum computation

Topological quantum computation

One-way quantum computation

Holonomic quantum computation

...

They are equivalent in computational power (i.e. all universal), however,
they have different merits and drawbacks.
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Why is TQC?

Topology:

In mathematics, topology is concerned with the properties of space that
are preserved under continuous deformations, such as stretching and
bending, but not tearing or gluing.

TQC conducts computation through some topological quantities of
quantum systems, which is naturally fault-tolerant to some kind of error.
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How is TQC?

If exchanging two particles gives rise to an extra phase factor e iϕ, this
phase factor must square to 1 since the system has undergone a trivial
loop. Then ϕ = 0 for bosons or ϕ = π for fermions.

ψ(C1) = ψ(C2) = ψ(C0).

In 3D space, there is only ONE kind of loop for a particle to circulate
around another particle.

C1

C2C0

Figure: Loops for particle to circulate in 3D
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How is TQC?

However, this is not the case in 2D space. C1 can not continuously deform
to C2 without cutting.

C1

C2C0

Figure: Loops for particle to circulate in 2D

Then it is possible to assign an arbitrary phase factor (Abelian anyon), or
a unitray matrix (non-Abelian anyon):

ψ(C1) = e iϕaψ(C2) or ψ(C1) = Uψ(C2).
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How is TQC?

TQC happens in the exchange of anyons. If the statistical evolutions are
complex enough then they can realise arbitrary quantum algorithms.

The problem is: 2D physical system does not exist.
Decouple two dimensions from the third one,

V (r) = Vxy (x , y) + Vz(z) ⇒ ψ(r) = ψxy (x , y)ψz(z).

Confinement along z direction can lead to energy gap, which protects the
states from being excited (referring to adiabatic theorem). Now the
system is essentially given by the 2D wave function ψxy (x , y).
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How is TQC?

Anyons in real life are not elementary particles, but quasiparticles.

Figure: (a) A system with constituent particles confined on a plane that give rise
to a 2D wave function. (b) Quasiparticles are identified as localised properties of
the 2D wave function of the constituent particles. (c) Often we forget the
constituent particles and we treat the quasiparticles as elementary ones living on
the 2D space.
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Heuristic Example: Aharonov-Bohm Effect

Result from quantum mechanics:
If a charged particle q adiabatically moves in
a magnetic field described by vector
potential A, along a looping trajectory C ,
the wave function will acquire a phase:

C

B

Figure: Charge in magnetic field

ϕ =
q

c~

∮
C
A · dr =

q

c~

∮
S(C)

B · dS =
q

c~
φ.
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Heuristic Example: Aharonov-Bohm Effect

Now consider a infinitesimally thin solenoid
with finite flux φ. The vector potential and
magnetic field is given by

A(r) =
φ

2π

(
− y

r2
,
x

r2
, 0
)

and
B(r) = φδ(r)ez .

C

B

Figure: AB Effect

If the path surrounds r = 0, the phase attached to the wave function is
then (c = ~ = 1 for simplicity)

ϕ = qφ.
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Heuristic Example: Aharonov-Bohm Effect

AB anyon: A mechanical picture of anyonic behavior. AB Anyon can be
regarded as the composition of a charge and a solenoid.

φ

q

Figure: AB anyon
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Heuristic Example: Aharonov-Bohm Effect

Circulate one AB anyon around another give rise to a phase of 2qφ.
Indicate that the statistics phase of AB anyon is qφ. Self-rotation of an
AB anyon implies the spin of AB anyon is qφ

2π .

φ

q

φ

q C
1 2

ϕ = 2qφ⇒ ϕa = qφ

φ

q

ϕ = qφ⇒ s =
qφ

2π
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Section Summary

The foundation of TQC is anyon statistics. Due to the topological
nature of anyon, TQC is robust to some kind of error.

Anyons are quasiparticles arises as localised properties of effective
2D wave function.

AB anyon is a picture for Abelian anyon. This is due to the U(1)
gauge invariance nature of electromagnetic field. We can envisage the
AB effect in terms of non-Abelian charges and fluxes.

Abelian anyon cannot form a universal set for quantum computation
(only phase change). More interesting and useful part lies in
non-Abelian anyon.
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Quantum Double Model
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Kitaev Toric Code

The origin of TQC:

Kitaev, 2003, Fault-tolerant quantum computation by anyons

In this paper, toric code is used to demonstrate the fault-tolerant nature
of TQC. Toric Code, denoted by D(Z2) is the simplest quantum double
model.

Quantum double model D(G ):

Lattice realisations of topological systems. They are based on a finite
group, G , that acts on spin states, defined on the links of the lattice.

Still, toric code can only support Abelian anyons. Though not universal, it
can be used for quantum memory.
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Kitaev Toric Code
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Figure: Lattice of Kitaev toric code
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Kitaev Toric Code

Vertex term:

A(v) = σxv ,1σ
x
v ,2σ

x
v ,3σ

x
v ,4

Plaquette term:

B(p) = σzp,1σ
z
p,2σ

z
p,3σ

z
p,4

Hamiltonian:

H = −
∑
v

A(v)−
∑
p

B(p)

v
1

2
3

4

p

1

2

3

4

Figure: Lattice of Kitaev toric code
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Kitaev Toric Code

Ground state:

|ξ〉 =
∏
v ′

1√
2

[I + A(v ′)]|00 · · · 0〉

Commutators:

[A,B] = [A,H] = [B,H] = 0

Eigenvalues:

A(v)|ξ〉 = B(p)|ξ〉 = +1

v
1

2
3

4

p

1

2

3

4

Figure: Lattice of Kitaev toric code
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Creation and Annihilation of Anyons

Creation of e anyon:

|e, e〉 = σz1 |ξ〉

The reason:

A(v)|e, e〉 = (−1)|e, e〉

Operator A(v) detects e anyons at
vertex v by eigenvalue −1.

e e
1

2

e

v
m

3

4
m

p
ε

Figure: Lattice of Kitaev toric code
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Creation and Annihilation of Anyons

Annihilation of e anyon:

σz2 |e, e〉 = σz2σ
z
1 |ξ〉

This is because

A(v)σz2σ
z
1 |ξ〉 = (+1)σz2σ

z
1 |ξ〉

No detection of e anyon on vertex v .

e
1

2
e

v

m

3

4
m

p
ε

Figure: Lattice of Kitaev toric code
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Creation and Annihilation of Anyons

Creation of m anyon:

|m,m〉 = σx3 |ξ〉

The reason:

B(p)|m,m〉 = (−1)|m,m〉

Operator B(p) detects e anyons at
plaquette p by eigenvalue −1.

e
1

2
e

v

m

m

3

4

m
p

ε

Figure: Lattice of Kitaev toric code
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Creation and Annihilation of Anyons

Annihilation of m anyon:

σx4 |m,m〉 = σx4σ
x
3 |ξ〉

This is because

B(p)σx4σ
x
3 |ξ〉 = (+1)σx4σ

x
3 |ξ〉

No detection of m anyon on
plaquette p.

e
1

2
e

v
m

3

4
m

p

ε

Figure: Lattice of Kitaev toric code
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Creation and Annihilation of Anyons

Creation of ε anyon:

|ε, ε〉 = σzσx |ξ〉

The reason:

A(v)|ε, ε〉 = B(p)|ε, ε〉 = (−1)|ε, ε〉

Both operator A(v) and B(p)
detects ε anyons by eigenvalue −1.

e
1

2
e

v
m

3

4
m

p
ε

Figure: Lattice of Kitaev toric code
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Fusion of Anyons

Fusion:

Bring two anyons together and determines how they behave collectively.
No interactions need to take place.

Fusion rule of toric code model:

e × e = m ×m = ε× ε = 1

e ×m = m × e = ε

m × ε = ε×m = e

ε× e = e × ε = m

e
1

2
e

v
m

3

4
m

p
ε
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String on Lattice

Two anyons can be created anywhere, linked by a string. The state of the
system is invariant with respect to deformations of the shape of the string
as long as its endpoints remain fixed.

e e

B(p)

Figure: String on the lattice
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Statistics of Anyons

Initial state:

|ψ〉 = C1C2|ξ〉

Exchange of two e anyons:

Ce↔e = (σz4σ
z
8)(σz3σ

z
7)(σz2σ

z
6)(σz1σ

z
5)

1 2 3

4

567

8

C1

C2

e

e

p1 p2 p3

Figure: Exchange of e anyons
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Exchange of two e anyons:

Ce↔e = (σz4σ
z
8)(σz3σ

z
7)(σz2σ

z
6)(σz1σ

z
5)

= B(p1)B(p2)B(p3)

Bosonic mutual statistics of e:

Ce↔e |ψ〉 = |ψ〉

Similar for m anyons.

1 2 3

4

567

8

C1
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Statistics of Anyons

Exchange of two ε anyons:

Cε↔ε = (σx1σ
z
5σ

z
6σ

x
2 )(σz2σ

x
4σ

x
3σ

z
1)

= (σx1σ
x
2σ

x
4σ

x
3 )(σz5σ

z
6σ

z
2σ

z
1)

= A(v)B(p)

Mutual statistics of ε is also boson.

e

m
ε

e

m
ε

1 2

3

4

5

6

v

p

Figure: Exchange of ε anyons
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Statistics of Anyons

Initial state:

|ψ〉 = CσzCσx |ξ〉

Lσz braiding e and m anyons, and

LσzCσx = −CσxLσz

Non-trivial phase arises:

Lσz |ψ〉 = −|ψ〉

Similar for braiding ε with e or m.

e

m

e
Lσz

Cσz

Cσx

Figure: Braiding of e and m anyons
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Statistics of Anyons

Initial state:

|ψ〉 = Cσzσx |ξ〉

Self-rotation of ε anyons Lσz , and

LσzCσzσx = −CσzσxLσz

Non-trivial phase arises:

Lσz |ψ〉 = −|ψ〉

Indicates ε anyons are spin-12 .

e

m
ε

Cσzσx

Lσz

e

Figure: Self-rotation of ε anyons
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Encode Information in Toric Code

Ground state is used to store information. However, for now, the ground
state is not degenerated, i.e. a 1-dimensional subspace.

Luyan Yu (Nanjing University) Topological Quantum Computation May 30, 2016 26 / 55



Encode Information in Toric Code

Identify the corresponding sides to form a torus:

AB = CD and AC = BD.

A B

C D
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Encode Information in Toric Code

Unique property on torus:∏
v

A(v) = 1 and
∏
p

B(p) = 1.

Only 2n2 − 2 operators A and B are independent.

Define the protected space (which is the space of ground state):

L = {|ξ〉 ∈ H | A(v)|ξ〉 = |ξ〉,B(p)|ξ〉 = |ξ〉}.

Now, the dimension is:

dimL = 22n
2−(2n2−2) = 4.

Thus, we have two qubits.
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Encode Information in Toric Code

Explicit description of four-fold degeneracy:
Create a pair of anyons and move them along a non-contractible path on
the torus.

(a) |ξ1〉 (b) |ξ2〉 (c) |ξ3〉 (d) |ξ4〉

Figure: Four-fold degenerate ground state
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Error Detection in Toric Code

For example, the initial ground state is |ξ1〉:

There are two kinds of errors might occur:

(a) Correctable (b) Uncorrectable

Figure: Four-fold degenerate ground state
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Error Detection in Toric Code

k-local operator

An operator that acts locally on at most k neighbouring subsystems.

Toric code protects qubits against bn2c-local errors. The strategy is to
annihilate the anyons through the shortest possible path on the geometry
of the torus.

(a) Corrected to |ξ1〉 (b) Error: become |ξ3〉

Figure: Four-fold degenerate ground state

Luyan Yu (Nanjing University) Topological Quantum Computation May 30, 2016 31 / 55



N-Fold Toric Code

The dimension of the ground state subspace is determined by the genus of
the surface.

Genus:

Intuitively, genus is the number of handles of the surface.

On a compact orientable 2D surface of genus g , the ground state has
dimension

dimL = 4g .

The genus of torus is 1, so torus code has four-fold degeneracy. A n-fold
torus has n handle, below is a 3-fold torus:

Figure: 3-Fold Torus
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Algebraic Topology Point of View

Take B as an example:

The set {B(p)} generates the 1-boundary group B1(T 2).

Group of operators commuting with {B(p)} is the 1-cycle group
Z1(T 2).

L is the 1-homology group

L ∼= H1(T 2) = Z1(T 2)/B1(T 2) ∼= Z2 ⊕ Z2.
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Other models

Kitaev honeycomb lattice model (Kitaev, 2006) supports both Abelian and
non-Abelian anyons. Ising anyon and Majorana fermion arise in this
model.

Figure: Kitaev honeycomb lattice model (Kitaev, 2006)
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Section Summary

Toric code is the simplest quantum double model that supports
Abelian anyons.

On toric code, Anyons have bosonic mutual statistics. On the other
hand, non-trivial phase −1 arises when braiding two anyons.

Toric code tolerates bn2c-local errors.

Non-trivial ground state subspace comes from the topological
property of surface: genus.
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Computation with Anyons
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Abstract Anyon Model

Consider an abstract model of topological system, with finitely many
species of anyons:

1(vacuum), a, a, b, b, c , c , · · ·

Three processes described by worldline of anyons:

Figure: Braiding, creation and fusion of anyons
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Fusion Rules

Fusion:

Bring two anyons together and determines how they behave collectively.
No interactions need to take place.

General fusion rule:

a× b = Nc
abc + Nd

abd + · · ·

means that putting a and b together would give possible outcome of c, d
and so on. Integer Nc

ab and Nd
ab indicate that there might be distinct

mechanisms producing c and d . And here the order is not important:

a× b = b × a.
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Fusion Rules

Abelian anyons have only a single fusion channel:

a× b = c .

Non-Abelian anyons:

a× b = Nc1
abc1 + Nc2

abc2 + · · · where
∑
ci

Nci
ab > 1,

which is due to the existence of non-trivial evolution between
non-Abelian anyons.
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Fusion Matrix

When we fuse several anyons, we are free to choose the ordering in which
the basic fusion processes take place.

a b c

i

d

=
∑

j(F
d
abc)ij

a b c

j

d

Figure: Conversion between different in-between state

F d
abc is called the fusion matrix or F matrix.
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Exchange Matrix

According to the statistics of anyons, the exchange of two anyons would
give rise to a phase factor. Set (Rab)c equal to the phase factor acquired
by the wave function when exchange a and b getting c .

a b

c

= (Rab)c

a b

c

Figure: Extra phase factor due to exchange of anyons

Note that (Rab)c is simply a number while Rab is a matrix whose diagonal
elements are (Rab)c , called exchange matrix or R matrix.
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Braiding Matrix

Because there are multiple fusion outcomes in the braiding process, we
need braiding matrix (B matrix) Bab.

a b

c di

=
∑

j(Bab)ij

a b

c di

Figure: Braiding matrix of anyons

It can be proved that

Bab = (F d
acb)−1RabF

d
acb or concisely B = F−1RF .
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Identities of F and R Matrices

Pentagon identities:

(F 5
12c)da (F 5

a34)cb =
∑
e

(F d
234)ce(F 5

1e4)db(F b
123)ea.

Figure: Pentagon identity (Pachos, 2012)
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Identities of F and R Matrices

Hexagon identities:

Rc
13(F 4

213)caR
a
12 =

∑
b

(F 4
231)cbR

4
1b(F 4

123)ba .

Figure: Hexagon identity (Pachos, 2012)
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Anyonic quantum computation

Quantum circuit model Anyonic model
State initialization Create and arrange anyons

Quantum gates Braid anyons
Measurement Detect anyonic charge

Figure: Skectch of anyonic computation (Pachos, 2012)
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Example: Ising Anyons

Anyon types of Ising anyon model:

1 (vacuum), σ (non-Abelian anyon), ψ (fermion).

Fusion rules:

σ × σ = 1 + ψ, σ × ψ = σ, ψ × ψ = 1,

σ × 1 = σ, ψ × 1 = ψ.

F and R matrices:

F σσσσ =
1√
2

(
1 1
1 −1

)
, Rσσ = e−iπ/8

(
1 0
0 i

)
.
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Example: Ising Anyons

|0〉Logical = |(σ, σ)→ 1〉 and |1〉Logical = |(σ, σ)→ ψ〉

Figure: NOT gate (Pachos, 2012)
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Example: Ising Anyons

NOT = (F−1RF )(F−1RF ) = F−1R2F = e−iπ/4
(

0 1
1 0

)

Figure: NOT gate (Pachos, 2012)
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Section Summary

The process of anyonic computation is creation, braiding and
detection of anyons.

Ising anyons model is not universal since its F and R matrices cannot
span SU(2). Other model such as Fibonacci anyons (Trebst, 2008)
can.
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Application
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Jones Polynomial

Topological invariant:

Topological invariant is a property of a topological space which is invariant
under continuous deformation.

Same topological space ⇒ Same topological invariant

Different topological invariant ⇒ Different topological space

The investigation of topological invariant is essential in many fields of
study.

Jones polynomial:

Jones polynomial is a topological invariant of knot or link.
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Jones Polynomial

(a) −A−4 + A−3 + A−1 (b) A−2−A−1+1−A+A2

Figure: Two different knots with different Jones polynomials

Jones polynomials are found to be important in many place: topological
quantum field theory, DNA reconstruction, statistical physics, ...
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Jones Polynomial

Unfortunately, the best known classical algorithm for the evaluation of
Jones polynomials requires exponential resources.
Using anyons, computation Jones polynomials is quite efficient and
straight-forward, like an analogue computer.
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Outlook
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Outlook

TQC is more suitable to be described in topological quantum field
theory. The TQFT formalism of TQC is quite mature by now (from
Chern-Simons QFT).

Although seems mysterious and theoretical, experiments have been
intensively carried out by physicists. Focus of experimental realisation
lies mainly on fractional quantum Hall effect.

Information theory can apply. For example, topological entropy can
be discussed in such a topological system.
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Thank You!
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